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1. Introduction ‘ :
T~ The most fundamental oblem in th ti theory of os~il- :
~ The al pr em in e entire 20ry of osnil :
lations is to describe the mctiog of a mass point, the tip nass 9 [
attached to a spring. Within the classical theory of pgrticle g
mechanics, the spring is regarded as massless, so that it serves E
only to transmit a force to the tip mass. This force typically C f
depends on the position and velocity of the tip mass in perhaps a Eﬁ
nonlinear way. In this case, the motion 1s governed by an auto- &
nomous ordinary differential equation. On the other hand, if the
spring has mass, then its motion as a continuum is coupled to that 4
of the tip mass. 1If the spring has a nonlinear constitutive equa- 5.
tion, then the analysis of the resulting motion, governed by par- !
tial differential eggat{ons, can be formidable indeed. %t
/}—fﬂ’this paper-ﬁ;:;¥§hy.the motion of both tip mass and spring i‘
when the mass density of the spring is small and when its consti- -
tutive eguation describes nonlinearly elastic and viscoelastic ﬁ
materials. Although these constitutive equations do not account §
for past history,—;e nevertheless,provd»that in the formal liﬁit é
as the spring’'s mass density goes to zero the equation for the tip w
mass is an ordinary differential equation for elastic springs, but W
is generally not so for viscoelastic springs. For the latter, it "
is typically an ordinary-functional differential vation in which %
the force law for the massless spring depends upon the“past histo- g
ry of the motion of the tip mass. We furnish restrictions\bn the g[
material properties and initial conditions for the motion to be %
governed by an ordinary differential equation in the usual form. ?
Although these restrictions are quite special, it {s fortunate | ﬁ
2
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that they are often encountered in practice.

A rigorous asymptotic analysis of the full system of equa-
tions feor nonlinearly viscoelastic springs is carried out i
It shows that the equations studied here constitute those for the
leading term of the regular expansion. The dissipative mechanism
associated with the viscoelasticity plays a crucial role in this
analysis. A comparable justification of the asymptotic status of
elastic springs is not possible. The full asymptotic analysis
relies on delicate estimates for quasilinear parabolic equations.

The mathematical tools used in the present paper are far less
esoteric. The novelty of our results lies not in the analysis,
but in the surprising structure of the eguations and in the meth-
ods for manipulating them. Nevertheless, the finding of paradoxi-
cal behavior here would be “vacuous, were it not backed up by
rigorous analysis.

This paper has two goals: (i) to describe the surprisingly
complicated behavior of massless viscoelastic springs; (ii) tc
serve as the first step in a development (pushed much further in
[1)) of effective techniques for the treatment of the dynamics of

structures undergoing large motions and deformations.

Notation. We denote partial derivatives by subscripts and ordi-
nary derivatives by primes. To avoid ambiguities we carefully

distinguish between a function and its values. Thus the function

N, appearing in Section 3, is formally presented as
(1.1) (0,1 (-1,x) 3 (x,y) — N(x,y) € %.

Then Nx(x,y) is its partial derijvative with respect to its first

argument evaluated at (x,y). We denote by x=N(x,y) or N{(°.,y)
3
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the function of x obtained from N by fixing y. 1In our nota-

0
log
W
"a
3

tion the term N(s,ws(s,t))s is unambiguously given by the
;ule as

(1.2) Nx(s,ws(s,t)) + Ny(s.ws(s.t))wss(s.t).

Were we to follow the common practice of replacing the x in
(1.1) with s, then the meaning of Ns(s,ws(s,t)f would no longer

be clear.
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2. Formulation of the Governing Equations

We define 2 spring to b2 a one-dimensional solid body wises

Ry configuraticn is confined to & line. Since the treatment of ;ra-

vity or of other natural body forces offers neither challenge nor

insight, we take these forces to be zero. We may accordingly re-

N gard the spring as confined to a straight smooth horizontal groove.
5 one end of the spring is fixed at a point taken to be the origin

v of coordinates of a line along the groove. A particle of mass m
i is attached to the other end of the spring.

é The natural length of the spring is taken to be 1. We iden-

tify a typical material point of the spring with its distance s
ﬁ from the fixed end in its natural state. In a motion of the
- spring-mass system, at time t the material point s occupies
the position at distance s + w(s,t) from the fixed end. w(s,t)

%3 is the displacement of s at time t. We reguire that

N

E (2.1) w (s.t) > -1, Vs< [0,1], Vt:0
| to ensure that the local ratio of deformed to natural length never
3 be reduced to zero. The requirement that the end s = 0 be fixed
N is expressed by

: (2.2) w(0,t) = O.

5 We impose the initial condition

; (2.3a,b) w(s,0) = w(s), wt(s,O) = y(s) for s € {[0,1).

t Here «© and 1 are prescribed, continuously differentiable func-
{ tions on [0,1i} with «'(s) > -1 for all s - [0,1)] for consis-
{ tency with (2.1) and with 1 (0) = 0 for consistency with (2.2).

’ Let -n(s,t) bYe the (component of the) contact force (along
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the groove) exerted on the material of ([s,1] by that of (O0,s)
at time t. Let srp(s) denote the mass density of the spring per
unit reference iength at s. « 1is assumed to be twice contin-
uously differentiable and positive on [(0,1]. ¢ is a small posi-
tive number. We assume that there are no externally applied forces
acting on the spring-mass system (since their treatment would be
routine). If w is sufficiently regular, the linear momedtﬁm
balance yields the integral form of the equations of motion:

1
(2.4) -n(s,t) = J cp(t)wtt(t,t)dt + mwtt(1,t),

s
from which we immediately deduce the differential equation of
motion:

(2.5) ep(s)w,,(s,t) = n_(s,t)
and the boundary condition at s = 1:
(2.6) mwtt(l,t) = -n{l,t).
The properties of the material at s are specified by giving
the dependence of n(s,t) on the history of ws(s,~) up to time

t by means of a suitable constitutive functional. Most of our

interest will be directed to viscoelastic springs of differential

type 1 whose constitutive equations are expressed in terms of

given constitutive functions

(2.7) (0,1)x(~-1,®@)x{-@,®) ® (x,y,2) » N(X,y,2) € R
by '
(2.8) ni{is,t) = N(s,ws(s,t),wst(s,t)).

(We systematically use the arguments introduced in (2.7) to iden-
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tify the various partial derivatives of N.) For contrast we

shall discuss elastic springs defined by (2.7), (2.8) with 4

- ..l

(2.9) N, = 0. o

n

To ensure that an increase in extension (strain) ws for ol

fixed rate of strain Wet be accompanied by a corresponding %{

increase in the tensile force, we require that :’

lv.

(2.10) NY > 0. fop

To ensure that a total compression be accompanied by an infinite i‘

2

compressive force and that an infinite extension be accompanied by f
an infinite tensile force we require that

"

2.11 N ® ® 1 ¢ 0.1 N

(2.11) (x,¥,2) — { ot as y — 3, or x¢< [0,1] :s

and for 2z bounded. &

To ensure that all motions of viscoelastic springs are dissipative 5}

4

we require that pe.

N,

(2.12) Nz > const > 0. ﬁ.

For simplicity we assume that N is continuously differentiable ﬁg

and that N(x,:,*) 1is infinitely differentiable. %:

Assumption (2.12) implies that z+»— N(X,y.2Z) has an inverse 4

k.

(i

(2.13) n — Z(x,y,n). ".;:

(X]

l.'..

It follows from (2.7) and (2.12) that ;@

(2.14) Z(X,y,n) — t® as n — + ©, E

"

\

from (2.12) that o

(N

'.0'

(2.15) zZ_ >0, '

n ¥

and from (2.10) and (2.15) that "o
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(2.16) 2 < 0.

Y
Now let n = N(v,y,z) or, egquivalently, 2z = Z(x.y.n). Suppecse
that y— -1 or Y, while n remains bounded. Then (2.11} aad

(2.12) imply that 2—® or -o, respectively. Thus (2.11) and

(2.12) also imply that

(2.17) | Z(x,y,n) — {fm} as y — {;1}

for n bounded.

The initial-boundary value problem for w is (2.2), (2.2),

(2.5), (2.6), -(2.8). The reduced problem corresponding to it,

obtained by setting ¢ 0 1in these equations, is

(2-18) N(S,Ws(sot),wst(stt)) = N(ltws(llt)'wst(llt))o
(2.19) w(0,t) = 0,

(2.20) mwtt(l,t) + N(l,ws(l,t), Wst(l't)) = 0,
(2.21a,b) w(s,0) = w(s), w.(1,0) = ¥(1).

In (2.21) we retain only those initial data needed to ensure that

{(2.18) - (2.21) has a unigue solution for small time. For cohpa-

tibility of (2.19) and (2.21a,b) we require that w(0) = 0. More-

over, (2.18) and (2.21) yield

(2.22) N(s,w'(s),wst(s,O)) = N(l,w'(l),wst(l,O)),
which is equivalent to

(2.23) Wo(8.,0) = Z(s,0'(8),N(1,0°(1),w_,(1,0))).
Since (2.19) implies that

(2.24) wt(0,0) = 0,

we obtain from (2.23) that

------ ” i SRR S R
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(2.25) wt(s,O) = | Z(E,u%f),N(l,w%l),wst(l,O))dE.
"0

There is no reason to expect this wt(°,0) to agree with + pre-
scribed in (2.3b). In fact, setting s =1 in (2.25) and using

(2.21b) we obtain

1
(2.26) v(l) = J Z(E.«f(f),N(llw'(l),wst(l.O)))df,

0
which we regard as an eguation for wst(l,O) in terms of the ini-
tial data of (2.21). (Equation (2.26) can be uniquely soclved for
wst(l,O), because the right side of (2.26) is a strictly increas-
ing function of wst(l,O) that ranges over (-®,®) with
wst(l,O).) This wst(l,O) need not agree with »'(1) of (2.3b).
Once wst(l,O) is found, we can substitute it into (2.23) to pro-

duce wst(s,O), which need not agree with wv(s) of (2.3b).

Remark. Every three-dimensional interpretation of our variables
shows that it is reasonable to assume that N and rp are each
proportional to the cross-sectional area of the spring. Thus we
might be led to replace N with eN', with ¢ interpreted as
the cross-sectional area. Such a parametrization would signifi-
cantly alter the character of our equations. To avoid confusion
on this question, it is helpful to regard the properties of the
spring, namely its density and constitutive function, as fixed and
?o parametrize the problem by the magnitude of the tip mass. (In

our analysis the small parameter + should be interpreted as pro-

|
portional to the ratio of the total mass {J i#ds of the spring to
o]

the mass m.)
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| A simple physical argument reinforces these remarks. Consi-

!

| der the equilibrium of a spring subject only to a2 constant end

load n{i,t) = 1. hien the eguilibrium version of (2.3) woulad -

imply that n(s,t) =1 for all s. Thus no introduction of a \

small parameter ¢ through a constitutive equation in fhe form

(2.27) n(s,t) = eN (s,w_(s,t),W_, (5,t))

could change the value of the tension n(s,t) ({but of course any
change in 1 would do so). If (2.27) is used, then the depen-
dence of w, on ¢, captured by an appropriate scaling, would
have to accommdate the weakening of the material. The scaling .
used would have to depend on N'. The adoption of (2.27) in our
problem would force us to confront the dynamical analog of this

difficulty. The analysis of {1] gives a precise standing to the

R O T =

reduced problem (2.18) - (2.21); no attempt has been made to jus-

tify problems based on (2.27).

M oy,
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3. The Reduced Problem for Elastic Springs

2+

We begin our s+tuvdy of the reduced problem in the dzgen

1)

ae

2}

[0)]

ca

il

e of elastic springs, which have constitutive equations or (L
form (2.8) with N independent of its last argument: Nz = 0.
The solutions of the reduced equations for elastic springs have

peculiarities not shared by those for other materials.

ut

In view of (2.10), (2.11), N(x,*) has an inverse (-x,x)

n— Y¥(x,n) € (-1,»). Let us assume that N(x,0) = 0 so that
Y(x,0) = 0. Then the reduced equation (2.14) subject to (2.9) lis
equivalent to

(3.1) ws(s,t) = Y(S.N(l.ws(l.t))-

Our goal is to find an equation for w(1,-), which governs
the motion of the end mass, when w satisfies (3.1), (2.19) -

{2.21). Eguation (2.20), which we rewrite as
(3.2) mw,, (1,%) + N(1,w_(1,t)) = O,

is the natural place to seek such an equation, but is unsuitable
as it stands because ws(l,t) is not related to w(l,*}). We now
obtain such a relation.

From (3.1) and (2.19) we obtain

8

(3.3) wis,t) = l Y(t,N(l,ws(l,t)))dt,
e]
1
(3.4) wi{l,t) = } Y(!,N(l,ws(l,t)))df E J(ws(l,t)).
0]

The properties of N show that J increases strictly from -1
to 2 as its argument increases from -1 to «. Thus (3.4) is

eguivalent to

11
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(3.5) Wo(1,t) = 7 w1, ).

The substitution of (2.5) into (2.2) vields an ordinary 2iffzren-

tial eguation for w{1l,+): -
(3.6) mw,, (1,8) + N(1,371(w(1,£))) = o. ]
Initial conditions for w(l,*) are given by (2.21a).
( »
Note that (3.4) implies that w(1,t) > -1. If the spring is
uniform, i.e., if Nx = 0, then J 1is Jjust the identity. The
properties of w(1,°*) are readily found by a phase-plane analysis y
of (3.6). The phase portrait consists of closed orbits around the !
origin. By substituting (3.5) into (3.3) we obtain w in terms 3
of w(l,*): :
s .
(3.7) w(s,t) = J Y(E,N(I.J-I(W(l.t))))dtl by
o []
which reduces to '
(3.8) w(s,t) = sw(l,t) 5
if the spring is uniform.
o]
Note that in general w does not satisfy even (2.21a). - -
Equation (3.7) shows that (2.21a) holds if and only if
s ]
- ¢
(3.9) o(s) = J v(e,N(1, 37 (w(1))))ae. ;
0 .
From (3.7) we obtain v
s X
3 -1 3
(3.10) w.(s,0) = »(1) J 3§Y(E,N(1.J (Y))))|Y=w(1)dt. 3
0 3
!
In the initial state given by (3.9), (3.10) with #(1) = 0, the “
W
spring is at rest under the prescribed end displacement «(1). Of o
all initial configuration at rest, these, parameterized by w(1}, k
12 ?
P
Y

-
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are the only ones that can be maintained with zero body force.

Note that for urifcrm springs, we find from (3.8) that (3.9),
(3.10) reduce to

(3.11) w(s) = sw(l), wt(s,O) = sp(l),

which have particularly simple interpretations.
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4. The Reduced Problem for Viscoelastic Springs

We now assume that N satisfies (2.12),
If the spring is uniforn, i.e., if Nx = 0, then we isma’1-

ately read off a solution to (2.18):

(4.1) ws(s,t) = ws(l,t).

It follows from (2.19) that

(4.2) w(s,t) = ws(l,t)s, w(l,t) = ws(l,t), wt(l,t) = wst(l,t).

Substituting (4.2) into (2.20) we obtain the following ordinary

differential equation for the tip mass
(4.3) mwtt(l,t) + N(;,w(l,t),wt(l,t)) = 0.
In general, the solution (4.1) satisfies the initial condi-
tion (2.21a) if and only if
(4.4) w(s) = @ (1)s.

The initial condition (2.21b) is discussed in the paragraph con-
taining (2.22). The interpretation of (4.4) is the same as that
for (3.9).

We now turn to the construction of a solution w of the
reduced problem when the spring is not uniform or when arbitrary
initial conditions of the form (2.21) are imposecd.

Let us set

(4.5) vit) = N(l,ws(l,t),wst(l,t)).
Then (2.18) implies that
(4.6) wst(s.t) = Z(s,ws(s,t).v(t)).

We rewrite (2.20) as

14
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(4.7) mwtt(l't) + v(t) = 0.

From (2.16) we ge<
i
(4.8) wil,t) = } ws(s,t)ds
0
so that (4.6) yields
1
(4.9) wt(l,t) = J Z(s,ws(s,t),v(t))ds.
o]

We now differentiate (4.9) with respect to t, use (4.7), rear-

range the resulting eguation, and use (4.6) to obtain

1
p(t)/m + j 2 zax

oY
(4.10) vt(t) = -

J1

2 ds

o

where the arguments of z,zy,zn are s,ws(s,t),v(t). Equations

(4.6) and (4.10) are a pair of ordinary differential equations for

t—»ws(-,t),t(t). They are subject to the initial conditions
(4.11a,b) ws(s.O) = w(s), +(0) = N(lno(l).wst(l.o))

where wst(l,O) satisfies (2.26). In a completely standard way,

the Contraction Mapping Principle implies

4.12. Theorem. There is a number t* such (4,6), (4.10), (4.11)

has a unique, continuously differentiable solution (o,t+) >

tewg(-,t), v(t) € c2([0,1],(-1,0))xR.

Remark. Condition (2.12) ensures that (4.9) can be uniguely solved
for v(t):

(4.13) L) = T e (L)W (1L 1))

If we replace :© in (4.6) and (4.7) with (4.13) we obtain a
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system of two first-order ordinary differential equations for

w (*,t) and wt(l,t) which can te used in place cf (4.7 and

-

>

-~

{4.10) tn rroduce a tieorem analogous to 4.12. Ncte that [4.°

and Theorem 4.12 imply that w l1,-) 1is continuously differen-

tt !
tiable on [0,t"). ' \
Now let us regard (4.6) at an ordinary differential equation <
for ws(s,-) when 1+ 1s regarded as given. Since 2Z(x,°.,n) is
continuously differentiable, the continuation theory for ordinary L
differential equations satisfying the Carathéodory conditions (cf.
(3, Chap. 2],[4,Sec.I.5]) imply that on any interval [O,t++),
possibly containing [o,t+], on which + is bounded (and measur-
able), equation (4.6) has a unigue absolutely continuous solution
ws(s,-) satisfying (4.11a) as long as ws(s,') is confined to .
(-1,). Now the parameter s appears in the initial value prob-
lem (4.6), (4.11a) in the initial datum w(s) and in the depen-
dence of Z on its first argument. By the continuous dependence
of solutions on the data (cf. [3, Theorem 2.4.2]) we find that ws
depends continuously on s for t = [O,t++) as long as ws(é,-)
stays in (-1,x). But condition (2.17) ensures that ws(s,-) ;

cannot leave (-~1,®) on [0,t++) as a sketch of the slope field

(t,y)=2Z(s,y,v(t)) Iimmediately shows. Hence we conclude that

4.14. Proposition. On any interval [o,t++) on which v is )

bounded (and measurable), problem (4,6), (4.11a) has a unique o

solution ws(s,-) with We continuous in s.

It then follows from (4.10) that ¢ must be continuous-on

RO e

such an interval. Let us combine (4.6) and (4.7) to obtain

3
-

=

(4.15) wst("t) = Z(s,w‘(s,t), - mwtt(i.t)).

16 6
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We can now invoke the continuous dependence of solutions on

the equation (cf. [5, Sectinon 2.2)]) to oktzin

4.16 Theorem. On any interval {0,t’") on which : = -mw

[
-t

\
tt

is bounded and measurable, it is continuous. On such an interval,

_— e s — — —— —

3
‘

problem (4,13), (4.11a) has a unique continuously differentiable

solution ws(s,-) with the properties that ws(s,t) € (-1,») for

0 s t < t++, w depends continuously on s, and ws(s,t) depends

s
continuously on the restriction of wtt(l,-) and thus of w(1,-°)

to {0,t] for 0 s t < t*7. A fortiori, w (1,t) and w_ (1,t)

depend continuocusly on the past history of w(1,-).

++

We now find conditions ensuring that ¢t = ®, Let
R
(4.17) E(x,y) = J N(x,n,0)dn.
o -~

Condition (2.10) ensures that E(x,*) 1is strictly convex and

(2.11) that E(x,y)—® as y-—®., We strengthen (2.11) by requir-

ing that
{4.18) E(x,y) — v as y — -1,®,

Let us multiply (2.18) by ws(s,t) and use (4.5), (4.,7),

(4.18) to write the resulting equation as
EY(s.ws(s,t))wst(S.t)
(4.19) + [N(s.ws(s,t),wst(s.t)) - N(s,ws(s.t),O)]wst(s,t)
= v(t)wst(s,t) = —mwtt(l,t)wst(s,t).

Integrating (4,19) with respect to s over ([0,1)] and using

(4.8) we obtain the energy equation

17
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1
d m 2
L {Ewt(l't) + [ E(s,ws(s,t))ds}
o]
1 .
= -} {N(S.ws(S.t).wst(s.t)) - N(S.ws(S.t).O)]wst(s,t)ds.
0

The first term in the braces on the left side of (4.20) is the
kinetic energy of the tip mass and the second term is the poten-
tial energy of the spring. 1In the reduced problem, the spring has
no kinetic energy. Since the right side of (4.20) cannot be posi-
tive by (2.12) we obtain
. 1
(4.21) Bw (1,t)%2 + | E(s,w_(s.t))ds s C
A4 2 t ’ ’ s [ .
0
Here and below, C represents a positive constant independent of

t, depending only on the data of the problem. Thus for ¢t €

(o.t™),
(4.22) th(l,t)! s C, Iw(l,t)] s C(1+t).
Next

w(li,t) > -1 for t in any compact
(4.23)

subinterval of [O,t++).

for if not, there would be a 7 € (o,t++) such that

1
(4.24) wiil, t) = J w‘(s,t)ds\'-l as t/'r.
0

Thus w_(-,t) would converge to -1 in measure as t/ v. But

this result contradicts (4.18) and (4.21).

Now we show that ¢! cannot blow up in finite time. 1If
b(t)— > as t—~t++. then (2.18) and (4.5) would imply that for
18
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each s in [0,1)]

(4.25) wc(s,t) —_ or w__!<

~ -~

as a consequence of (2.11), (2.12). But (4.8) would then imply

that

(4.26) w(l,t) —» @® or wt(l,t) — ® as t — o

in contradiction to (4.22). If v(t)—-®» as t——ot++, then ana-
logously for each s in [(0,1)

++

(4.27a,b) ws(s,t) — -1 or (s,t) —s - as t —— ¢t

Yst

Now (4.27b) cannot hold on a set of postiive measure since it
would imply by (4.8) that wt(l,t)——o-w in violation of (4.22).
Thus (4.27a) would have to hold for almost all s in (0,1}
implying by (4.8) that w(il,t)— -1 as t—ttt. This result is

incompatible with (4.23) if t** < ©. Hence we have

4.29. Theorem. Let (4.18) held. Then Theorems 4.12 and 4.16

hold with t* = ¢*7 = a,

Theorem 4.16 says that ws(l,t) depends on the past history
of ws(l,-). If this dependence is substituted into (2.20), we
might well get a functional-differential egquation for the tip mass.
Could the abstraction (in the form of the contraction mapping prin-
ciple) underlying the proof of Theorem 4.16 obscure the possibili-
ty that w’(l,t) might depends only on the present value w(1l,t)?
What are the conditions for this to happen? I.e., what are the
conditions for the motion of the ‘end mass to be governed by an

ordinary differential equation? We address these questions in the

rest of this paper. We begin by studying an illuminating example.

19
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5. Example Linearly Viscor .astic Springs

We illustrate the results of Section 4 with the reduced prol- ::
1
lem for liasearly wiccoelactic springs for which N has the . . 'j
y
(5.1) N(x,y.2) = p(x)z + q(x)y )
L
where p and q are positive and continuous on ([0,1). For this ‘

linear law, presumably valid for small motions, it is inappropri- <
ate and impossible to require that (2.11) hold. i
Let 5.
(5.2) r(x) = q(x)/p(x). ' ”
Then we can write (2.18) as :
o
o
8

(5.9) [e"% fu (s, 0)] = prnip(sy el T, (g o]
s

t t :
from which we ultimately obtain N,
1 t 3
(5.4a) w(1,t) = £(t) + aw_(1,t) - J b(s)J e”an-t)wz(l.n)dnds .
0 0 "
where ',
1 "
(5.4b) £(t) = J e T (s) - p1)p(s)lor(1)]as, -
o $
1 ph,
(5.4c) as= I p(l)p(s)'ids. ¢
o] -
(5.44) b(s) = p(1)p(s) (r(s) - r(1)]. 3
Wt
To convert (2.20) to an equation for w(1l,°) alone, we must i
solve (5.4) for ws(l,t) in terms of w(l,°). If r {is constant, ﬁ
) Y
then the solution is immediate. Otherwise, observing that the ,&
o
integral over (0,t) on the right side of (5.4a) is a convolu- 2
tion, we can accordingly solve it by the Laplace transform method $
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to obtain
t

(8.8) wolw, t) = | (wig.,n)=-f(n)]g(t-n)dn
"0

where g is the inverse Laplace transform of

t -1
(5.6) o — [a - [ :iizgs] .

0
In order for (2.20) to be an ordinary differential egquation for
w(l,* ), we must be able to express ws(l,t) in terms of w(1,t).
Since the solution (5.5) is unique, this possibility can occur if
and only if g 1is the Dirac delta, i.e., if and only 1if (5.6) is
a constant function. This happens if and only if b =0, {i.e.,
if and only if r 1is a constant. (The constancy of r may be
regarded as a reflection of the proportionality of the moduli p
and q to a—variable cross-sectional area of the spring.) Thus
if r 1is not constant, then the reduced equation for the tip mass
is that for a massless viscoelastic spring of memory type.

Even if r is constant, the resulting equation for wo(l,-)

is not autonomous unless the transient f = 0, 1i.e., unless (1)
= av'(l1). We can also determine conditions ensuring that the func-

tional differential eguation (occurring when r 1s not constant)

is autonomous. A sufficient condition for £ = 0 1is that

b

(5.7) h(is) = o' (8) - p(1)p(s) "w (1) = O.

If r 1is monotone, (5.7) is also necessary. For if f = 0, then

all its derivatives vanish at 0:

1 r(l1)
(5.8) 0= J r(s)kh(s)ds = xkh(o(x))o'(x)dx, k=0,1,...,
0 r{0)

21
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where ¢ is the inverse of r. Since the monomials xk are com-

plete (in Lz, sav), equation (5.7) follows.

‘ The develcgment encompeassing (5.1) - (5.4) can Le car:is/

for nonlinear constitutive functions of the form

(5.9) N(x,y.z) = F(x,y)yz + r(x)F(x,y),

but such N's cannot satisfy (2.11). We find that if r 1is con-
stant, then the reduced egquation for the end mass is an ordinary
differential eguation. (We of course cannot apply the Laplace
transform to our nonlinear equation to effect a general solution

of the analog of (5.4).)
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6. Necessary Conditions for the Reduced Problem for the End Mass

to be Governed by an Ordinary Differential Eguaticn

The results cr the last two sections suggest two gues%tizn:z
about the behavior of the reduced problem for nonlinearly visco-
elastic springs:

i) what conditions on N ensure that the reduced problem
for the tip mass (generated by (2.20)) be governed by an ordinary
differential equation (possibly with a nonautonomous transient
term) for all initial data w,v (satisfying (2.26) at t = 0)?

1i) What conditions on N and the initial data ensure that
this problem is governed by an autonomous ordinary differential

equation for all values of w(l),y(1)? (These data are those

aTe A AL

appropriate for the motion of a mass point on a massless spring.)

We obtain necessary conditions, which can be used to show that such
i' ordinary differential equations cannot occur for most materials.
We begin with gquestion (i). Since we have more data to vary for
this problem, we get much sharper restrictions.

Evaluating (2.18) at t = 0 and using (2.3) we obtain
(6.1) N(s,0'(s),v'(s)) = N(1,0°(1),%'(1)),

' which is a compatibility condition for initial data (cf. (2.22)).
If (2.20) is to generate an ordinary differential equation for

w(l,-), then w.(l.t) and wst(l,t) must be functions of
w{l,t) and wt(l,t). Indeed, if the order of the egquation is not

to exceed 2, then this dependence must have the form

s e n 8 E & &

(6.2a) ws(l,t) = J(w(l,t),t),

<A

(6.2b) wst(l’t) = jw(w(l,t),t)wt(l,t) + J((w(l.t).t)

23

I R BT Y A S A N A D N SR DM I




i Gah Vet tal At ol ¥ ]

where &
i
(6.2C) (-1:")’[0,“) = (wr{) "'—'j(wlf) ‘:
3
is a function to be determined. Let us set e
(6.3) a= (1), 3 = p(1).
By letting t— 0 in (6.2a,b) we obtain p
]
(6.4) ©w'(l) = j(a,0), v (1) = Jw(a.O)B + j((a,O). -
Now we substitute (6.4) into (6.1), solve it for #‘'(s), integrate »
the resulting equation with respect to s from O to 1, and
use (2.19) to obtain 9
1 .
(6.5) 3 = J Z(s,w'(s),N(l,J(a,O),jw(a,O)B + Jc(a,O)))dS- :
0
(Using (6.5) we do not have to worry about how »' is determined :'
from (6.1).) Equation (6.5) must hold identically for all suffi- s
ciently smooth functions ® satisfying ©(0) = 0 and o > -1 ;-
r
and for all real numbers 3. Thus the Gateaux differential (first F
el
variation) of the right side of (6.5) with respect to < in the ;
direction 7 must vanish for all 7n with n(0) = 0: 9
A
1 4
, 1 )
0 = [ {zyn'(s) + Z [N 3 (a,0) .
(6.6) 0 . %
+ Ny (3, (@008 + 3, (a,0))]n(1))ds. ]
"y
Here and below we understand the arguments of Z to be those ¥
shown in (6.5) and we use NI,N;,... to stand for the values of #7
]
N,Ny,... at the arguments of N shown in (6.5). By the funda- 5
v
mental lemma of the Calculus of Variations, we obtain from {(€.§6) -ﬁ
that "
| i
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(6.7{ Zy(s,of(s),Nl) = Zy(l,w'(l),Nl), vV w,a,8,s.
{The fundamentzl lemma &lso praduces a natural boundzary condinicon

': from (6.6).) The differentiation of (6.5) with respect to
vields

; 1

) (6.8) 1= U ans]N;jw(a,O), v o',a,8.

2 o]

5 Conditions (2.10) and (2.12) then imply that jw(a,O) is every-
where positive. It follows that Jw(a,O)B and therefore N1
range over (-o,®») as 3 randes over (-o,®)., Thus (6.7) implies
that
(6.9) 2. (s,o'(s),n) =2 {(1,&'(1),n), V s,0',n.

A Yy Y

¢ Since ®'(s) is arbitrary in (-1,») and since s is arbitrary

ﬁ in [0,1}, we conclude from (6.9) that

o (6.10) Zy(x,y,n) = Zy(l,w'(l),n), V (x,y,n) ¢ "0,1)x(-1,0)x(~®,®),

.

y

; (Applying this condition to (5.1) we immediately obtain that g/p

7 = constant, in complete agreement with the findings of Section §5.)

i But condition (2.17) implies that (6.10) cannot hold. Hence, our

; answer to question (i) is that there are no materjals satisfving

: (2.10) - (2.12) for which the reduced problem for the tip mass is

‘: governed by an ordinary differential equation for all initial data.

; We now turn to guestion (ii). We assume that N(x,0,0) = O.

| We begin by studying (2.18) - (2.21) subject to small initial data

Y of the form

(6.11) w(s,0) = no,(s), w (1,0} =nr, (1)

where 17 is a real number small in absolute value. As in Section

4 we can use standard results from the theory of ordinary differ-
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ential equations to show that (2.18) - (2.20), (6.11) have a solu-

tion of the form
1 o 2
(6.12) wis,t;n) = nw (s,t) + (n7/2)w (s,t) +

We get the equations satisfied by wh by substituting (6.12) into
(2.18) - (2.20), (6.11), differehtiating these equations r times
Awith respect to 7, and then setting 7 = O.

Let us set ﬁy(s) = Ny(s,o,O), etc. Then w’ satisfies the

linearization of (2.18), (6.11):

= 1 = 1 _ = 1 = 1
(6.13) Nz(s)wst(s,t)+Ny(s)ws(s,t) = Nz(l)wst(l't)+Ny(1)ws(1't)'

(6.14) wl(s,0) = w,(s).

The analysis of Section 5 shows that w;(l,t) has the form

j(wl(1.t)) 1f and only if

1
(6.15a,b) Ny(s)/Nz(s) = r{const.),. wl(l) = wi(l)[ [Nz(l)/Nz(s)]ds.
o]
In this case we readily find that
s
1 1 1 1
(6.16a,b) ws(s,t) = 3 (s)w (1,t), wi(s,t) = w (1,t)J yleyde,
0
N_(1)/N_(s)
(6.16¢) 7(s) = Z 2
jotﬂz(l)/ﬂz(z)ldz
Now w2 satisfies
[ ]
[— rt 2 ] rtf- 1 2
N (F)le w_ (Z,t + e N (E)yw (£,t
L z( )L s( ) . [ Yy( ) s( )
(6.17a) 28 (r)wirL )Wl (2, )
' yz' st st' '
= ol 211 -
+ NZ(L)wst(h,t) }J o,
;=0
26
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(6.17b) wz(s,O) = 0. '

Treating (6.17) in a manner just like that of Section 5, we £:i:.3

that wi(l,t) depends only on w°(1,t) and wl(l,t) (without

- - e

history terms or nonautonomous terms) if and only if \

1

= 2 _ = 2].1 2
. J {[NYY(S)r(S) Ny (17 (1) fut (1, )
- 2 - 2] 1 1 ,
(6.18) + 2[NYZ(S)7(S) - Nyz(1)7(1) Jw (l,t)wt(l,t)
: | + [ﬁzz<s>r<s)2 - ﬁzz(l)r(l)dei(l.t)2}d5 = 0. |

We let t— 0 in (6.18). Since wl(l) and wl(l) are indepen-

dent, we obtain from (6.19) that

(6.19) ﬁyy(s)r(s)z, ﬁyz(s)r(s)z, ﬁzz(s)r(s)2 are constants. :

Equations (6.15) and (6.19) are two sets of necessary conditions
for the reduced problem for the tip mass to be governed by an E
ordinary differential equation. It is clear how to continue this ‘
procedure ad infinitum. q
An alternative global approach to problem (ii) based upon the
formalism developed for problem (i) illuminates some of the issues
involved, and it can directly produce the relationship between !

ws(l,t) and w(l,t). In this method we replace (6.2a) with
(6.20) we(l.t) = J(w(1,t)), J(0) =0

because we require the resulting form of (2.20) to be autonomous.
The second equation of (6.20) is consistent with the requirement
that N(x%,0,0) = 0. We adopt (6.3) and allow « to depend upon

a: y
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(6.21) W = 0Y(s,a).

Then (6.5) reduces tc

1
Z(s,ax(s,0),N(1,j(a),J (a)3))ds, V a,B.
0

(6.22) 3

This equation restricts the functions 2(-,y,n).x, and j. If we
set B8 = 0 in (6.22), then we can use (2.10), (2,11), (2.15) to
solve the resulting equation for j in terms of a and (°.,0).

We can get alternative representations for j. Differentiat-
ing (6.22) with respect to 3 we obtain

1 -1
NZJ ans] , ¥ a,B.
0

(6.23) J(a) = [

Here the arguments of Nz and Zn are those of N and Z in
(6.22). We adhere to this same convention below. Equation (6.23)
(or (6.22)) may be regarded as an ordinary differential equation
for j parametrized by 11,Z. The right side of (6.23) is inde-
pendent of 3, so we could set 3 = 0 there for the purpose of
determining Jj. Conditions (2.12), (2.15) imply that J'(a) >.O.
Thus j'(a)d3 ranges over (-»,x) with 3. It follows that (6.22)

.is equivalent to

1
(6.24) z = f(a)] Z(s,ax(s,a),N(1,J(a),2))ds, V a,z
o
and to
1
(6.25) 2(1,j(a),n) = y(a)[ Z(s,ay(s,a),n)ds, V a,n
o

by the remarks leading to (2.13). The substitution of (6.23) into

(6.25) yields
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I 2{s,ay(s,a),n)ds
(6.26) Z(1,3(a),n) - 0

~l

203 3G N(S, (), 0))

“n'

(U}

1
Jozn(S,u|(s,u),N(1.j(u) SRR

This equation would be an identity if Zx = 0, J(a) = a, r(s,a) =
1. Thus this equation suggests how 1 must compensate, if pos-
sible, for nonuniformity of material response. We get a collec-
tion of necessary conditions for 2(°,y,n) and x to satisfy any
version of (6.22) by differentiating it repeatly with respect to
a and 3 (or equivalent variables) and then setting a = 0 and

3 equal to any convenient value. 1In this process we can generate

a power series for J and we recover results like (6.15) ~ (6.19).
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Comments

We could easily treat problems in which the paramete:

bl

- -

th

appears elsewhers, proviced its vanishing does not contri

further reduction of the order of the system. But our methods

cannot handle the important problem in which the modulus of

viscosity Nz would go to zero with the parameter ¢. We could, <

however, treat problems in which the spring is slightly nonuniform,

with ¢ also serving as a measure of nonuniformity. 1In this case,

the reduced problem would be that for a uniform spring. (We would

thereby lose at this level the interesting phenomena of hysteresis

generated by nonuniformity.) Of course, to treat small nonuniform-

ity in a truly satisfactory manner, we should properly character-

ize it by an independent parameter, and then study the asymptotic

behavior of solutions on different regions of the neighborhood of

the origin in the plane of these two parameters.

Our entire formal theory can be carried out if (2.8) is

replaced by a constitutive equation in which n(s,t) depends upon

the history of ws(s,-) up to time t. The study of the reduced

problem, which devolves on the analysis of (2.20), can be conducted

as in Section 4. 1In particular, if the spring is uniform, then

(2.20) for such materials reduces to

(7.1) N(wg(s,°)) = N(w_(1,%)),

which admits a solution in the form ws(s,t) = ws(l,t). The

treatment of such solutions is identical to that given in Sections

3 and 4. The difficulty with materials with memory is that if +he

constitutive equation lacks a term like that of (2.8) satisfying {

(2.12), then we cannot call upon the theory of parabolic eqguations
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E to justify the expansions for the full problem in [1). There is a

) small but illuminating mathematical thecry of cne-dimensionzl

\ vroviems for materielse with memory {(cf. Fenardy, KHiusa.& llch-]

, for references) that indicates the sort of difficulties we could
expect to encounter. For many such materials there is a threshold
such that if initial data are smaller than this threshold, then
the solution is well-behaved for all time, whereas if the initial
data exceed this threshold, then the solution blows up in finite
time (i.e., the body suffers a shock). Thus we could surmise that
an extension of the results of Section 4 and of [1 ] to such mate-
rials would require at the least some restrictions on the size of
initial data. (Hrusa & Renardy [6] have studied a class of mate-
rials with memory that comes closer to capturing the strong dissi-
pative mechanism of (2.8), (2.12) than those just described.)

Many rheological theories describing materials with memory
are based on the modelling of behavior on the molecular level with
systems of springs and dashpots. It is interesting to examine the

| discrete model in order to discern in microcosm some of the Qiffi-

culties we have faced.

For simplicity we examine the linear system with just two
degrees of freedom shown in Figure 7.2. k and £ denote spring
constants, b and ¢ denote damping constants, and &m and m
denote masses. Let x and w denote the displacements from the
rest positions of the masses tm and m. Then the equations of

) motion of this system are

X (7.3) smx + (b+c)z - cw + (k+{)x - ¢w = 0,
i (7.4) mw + c(ﬁ-ﬁ) + {{w=x) = 0,
[}
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the superposed dots denoting time derivatives.
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Figure 7.2

For r = O, (7.3) reduces to

Mk+4Y 1 _

(7.5) %t-[x(t) exp [gre) ] k+<

c ) ( a4 0
[ETEJEXPLETE - EJt a?[w(x)exp < tJ,
which is analogous to (5.3). The solution of this eqguation for
x(t) 4in terms of w(t) is elementary. If k/b = £/c, which
corresponds to the constancy of r, the equation for w obtained
by substituting the representation for x obtained from(7.5) into
(7.4) is a second-order ordinary differential equation. Otherwise,
it is a second order functional-differential equation, i&s memory

term reflecting the equivalence of this equation to the third-order

system (7.3), (7.4) of ordinary differential equations for +« = 0.
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({In the problems treated in Sections 4 - 6, we reduced a partial

AR ERD

differential eguatini, essentially eqguivalent tec arn infinite s-=-

-

tem cf crdinary cdifferential eguations, to a single seccond--cr.o::

ordinary (functional-) differential equation.) Note the simplifi-

o

cations that follow from (7.3), (7.4) when b = 0 = ¢; these are
analogous to the results of Section 3. The full asymptotic analy-

sis of (7.3), (7.4), or of a corresponding system with many degrees

P\l «

of freedom, would follow directly from the asymptotic theory of
ordinary differential equations.
These results and those of Sections 4 - 6 raise the following 1

) guestion: Suppose we are given some initial conditions and solu-

tions of an evolution equation in finite-dimensional space. When

can we tell whether the equation is an ordinary differential equa-

LNl af G A

tion of some fixed order? Equivalently, we are given the input
i and output of a black box. How can we tell whether the dynamics
. of the black box iIs governed by ordinary differential equations?
The occurrence of memory effects in elastic wave propagation

in nonhomogeneous media is well known (cf. Chen & Gurtin [2), Reiss

g 00 0 g 4

[7]). The nonhomogeneities reflect signals before they reach the

boundaries. These reflections contribute to an effective memory

LA S

term, the effect being pronounced in composite materials (as Chen

& Gurtin show). For our problem, memory effects are not manifested

alL

in elastic springs, but only in springs with viscous dissipation.
In 1911, Timoshenko (cf. (9, Section 4.9]) developed a simple

& technique to account for the mass of a linear spring. OQur results

show how much richer the theory becomes when viscosity and nonlin-

earity are allowed to intervene.
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